

ITS Asia-Pacific Leaders Forum

5G AloT Driven ITS Technologies for Innovative Services and Industrial Developments

Dr. S.K. Jason Chang

Professor, National Taiwan University

Expert Member, Board of Transportation Science and Technology

Ministry of Transportation and Communications, TWN

and

Dr. Lance H.H. Huang, Director General

Dept. of Science, Technology and Information in MOTC

The 19th ITS Asia Pacific Forum Jakarta, Indonesia, May 27~31, 2024

Agenda

- 1. Update of ITS Taiwan
- 2. Overview of the 5G/AloT Projects

2017.11.22

2018.07.05

Background Information and Update of ITS Taiwan

Taiwan and ITS Development

High Speed Rail: the journey b/w Taipei and Kaohsiung (360km) 90min.

Taiwan: 36,000 sq km, Population 23.1 mi

Car- 7.8 mi, Motorcycle- 14.3 mi;

Highly motorized: 957 Vehs/1,000 (619 M/Cs + 338 Cars)

- Freeway Network: 1,000 Km MLFF Distance-Based Charge System since Nov. 2004(ETC)
- Modern Traffic Management and Travel Information Centers
- Smart Card issued for e-Purse and Mobile Payment since June
 2002: more than 75 mi cards issued
- GPS Bus: 100% (2017); e-Tag Car: 94% (2010); e-Payment: 94% (Public Transportation); i-Taxi: 78%
- National Transportation Data Sharing Platform (TDX) for MaaS and Value-Added Applications/ Services
- T-Pass: A Pre-MaaS National Program
- Inclusive Mobility: 430 DRTS Routes/ MOD Services
- Smart Railways (High Speed Rail and Conventional Rail)

Transportation Technology Industry Board formed by MOTC in 2019 and reformed on 2022

- Intelligent Electric Motorcycle
- Railways Industry
- Big Transport Data
- Intelligent Public Transportation Services
- Smart Harbor, Airport, and Logistics
- Drone Technology
- Big Data and Test Fields of 5G/AIOT Applications
- Bicycle and Tourism

Goals: ITS⁵
Safe
Smooth
Seamless
Sharing
Sustainable

2025~ GO Safe GO Smart GO Green

New Governance and Institutional Reform (2023.09.15):

 Department of Information, Science and Technology in Ministry of Transportation and Communications (From Two offices: <u>Information</u> Center and Advisory Office of Sciences and Technologies)

Net Zero Transportation Policy

- 3+2 Policy and Roadmap
- 3: (i) Green Transportation, (ii) Zero-Emission and Electrified Mobility; (iii) Management of Car and Motorcycle
- 2: (2-1) TOD + (2-2) Green Living & Behavior Change
- Technology-based Approach and Evidence-based Decision for NZ Goals
- Green Transportation: Public Transportation + Active Mobility
 + Shared Mobility + MaaS and SDGs+ ESG
- TDM and Management of Motorcycles and Cars:
 - Low Carbon Zone
 - Parking Management
 - Shared e-Mobility and Public Bike
- **Zero Emissions** and Electrified Mobility Policy:
 - 2030: All City Buses are Electrified
 - 2035: 40% New Motorcycles and Cars are Electrified
 - 2040: 100% New Motorcycles and Cars are Electrified

Road Safety and Vision Zero

In the past 10 years.....

• Fatalities : > 35,000

• Injuries: > 3,000,000 Serious Injuries: > 400,000

Social/ Economic Loss: > 15 Bi. /Year (= 3.12% GDP)

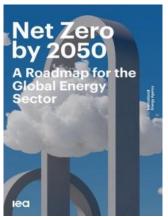
In 2022: 8 Fatalities, 1,368 Injuries / Day

High Risk Group: (1) 15~24 Young Generation (6 Fatalities/ week)
 (2) > 65 Seniors (35%)

Prime Minister Chen finally announces \$1.35 Bi National Road Safety Program (2024~27) in August 2024 and President Lai has committed Vision Zero: 50% Fatality Reduction by 2030!

Sources: MOTC, CT, UDT, LT,

TWO Zero Challenges:

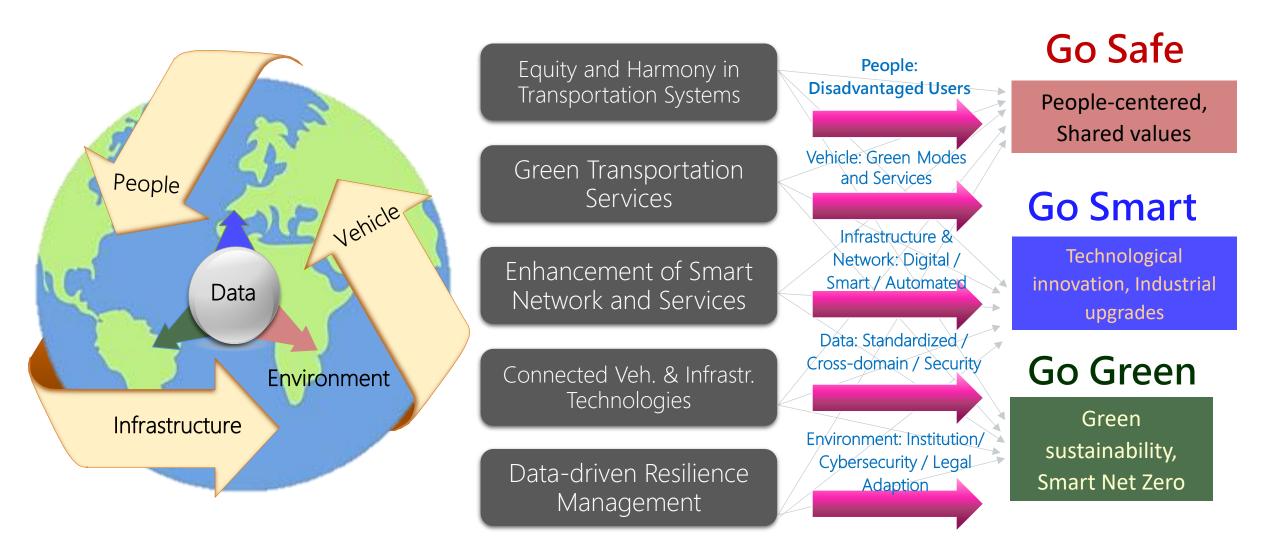

- ✓ Net Zero
- ✓ Vision Zero

"Achieving the 2050 Net Zero Goal is hopeless without deep decarbonization in transport sector"

Othmar Karas, The First Vice President, European Parliament (April 2023)

+ Keith Howells, President of Institute of Civil Engineers UK (June 2022)

How digital technologies can help of achieving the goals of 2 Zeros?



ITS Policy: Go Safe, Go Smart and Go Green

People, Vehicles, Infrastructures, Data and the Environment are key elements for improving inclusive services to all People and for achieving ESGs and Net-Zero Goals.

Overview of the 5G x AloT Driven ITS Deployment Projects

Smart Railway POC
Smart Highway Corridor Applications
Smart Harbor Management POC
i-Services in Airport Terminal
Smart and Eco-Tourism POC
D-City: Field for Various and Integrated Trials

Objectives and Implementation Approach

Strategic Objectives

Public Benefits

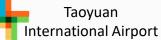
Needs of General Public

5G Transportation Services

Industrial Business

R&D in Taiwan and World Market Industrial cooperation & Innovative **Applications** International Partners and

5G ITS Industry


Collaboration for Green Economies

National Welfares

Implementation Approach

MOTC initiates trials to enable the 5G/ AloT industry to demonstrate their technologies in providing innovative services and safety for the transportation systems. Fundings from 5G concession fees are provided for enhancing collaboration of public and private sectors to develop innovative applications in various demonstration sites.

Participants PPP

Taiwan Railway

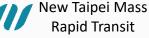
Administration

Taiwan Highway

Administration

Taiwan Port Company

MOTC


Highway

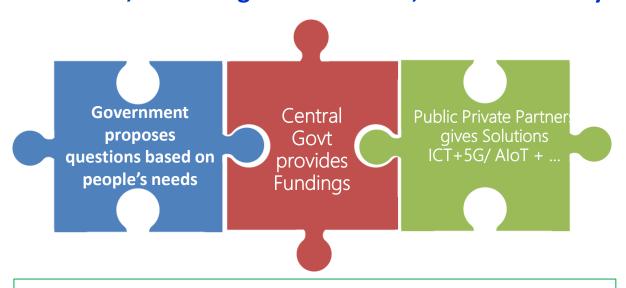
Bureau

Sun Moon Lake

Administration

Kaohsiung Mass Rapid Transit

InComm



Promotion Framework and Project Management

Formulation of Public-Private
Cooperation in Transportation Fields

Create a smart transportation ecosystem consisted of field services, technological innovation, and ICT industry.

A. 3 major features of 5G technology: Broad connections, Low latency, and Wide bandwidth

To demonstrate these features will be beneficial to transportation systems and 5G/ AloT Industry.

B. Integration of drones, autonomous Vehicles, Internet of Vehicles, MaaS will inspire **innovative service ideas** and **business models** for applications of 5G and other digital technologies.

Create a New Market for 5G AloT Integrated and Intelligent Transportation Systems

Coaching schemes for 5G Applications and cross-domain cooperations

STEP. 1

Select Demonstration Sites

Service quality, operation efficiency safety, convenience, cross-industry ...

STEP. 2

Assess 5G Environment

Digital network capabilities
Common standards, cloud computing...

STEP. 3

Teaming up Public-Private Partners

Planning and feasibility studies Business models, evaluation of benefits

STEP. 4

Expert Guidance and Proposal Assessment

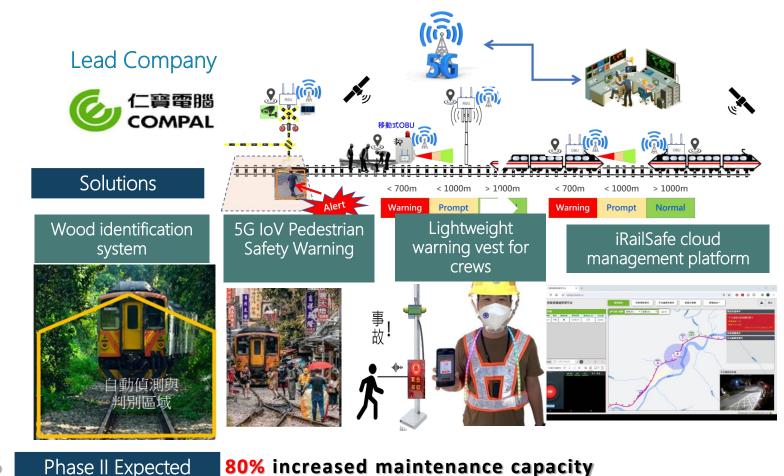
Smart Railways I

Integrated safety for railways plus 5G Internet of Vehicles for the safety of ground crossings

Pain Points

- ➤ Safe operation of trains
- > Safety of drivers and work crews

Phase I Successes


Internet of Vehicle instant messaging, point-to-point 20 millisecond message broadcast.

Incidence rate of ground crossing accidents has dropped by more than 90%

Project:

Results

- 1.5G Smart Railway Safety Pre-Warning and Decision-making System Project (Phase I)
- 2. Smart Train Information Monitoring and Big Data Analysis Platform using 5G/AloT Technologies (Phase II)

95% reduced risk of accidents, and warnings accuracy

Smart Railways II

5G x AI means full monitoring for total safety

Pain Points

- > Safe operation of trains
- > Train positioning
- > Heavy manual works

Phase I Successes

Saves processing time and cost by more than 90%

Improves decisionmaking and operational efficiency by more than 90%

Project:

- 1. 5G Smart Railway Safety Pre-Warning and Decision-making System Project (I)
- 2. Smart Train Information Monitoring and Big Data Analysis Platform using 5G Transmission (Phase II)

ATP and TCMS Driving Systems

Solutions

Phase II Expected Results

Increase maintenance capacity by 90%
Save interpretation time by 96%
Reduce train operation risks by 95%
Train operation monitoring rate is 100%

Smart Railways III

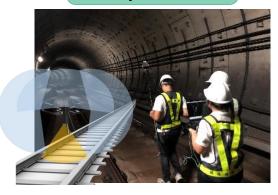
Applying cutting edge technologies to create smart service and operation model for Kaohsiung Metro in a step toward active service

Paint Points

- **➤** Lack of Inspection manpower
- Low detection efficiency and high personnel safety risks
- ➤ Inspection records are still kept on paper

Project: 5G Smart Transportation-- Innovative Al Inspection Deployment in Rail Transportation

Lead Company

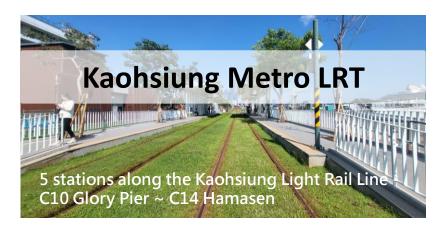


Solutions

Station Inspections

Bridge & Tunnel Inspections

Control Center



- Set up Service Robots to conduct station inspections and use 5G to transmit the captured images to the cloud for AI image judgment
- Provide Drone Inspection Service on tunnels and bridges, and by the aid of 5G transmission of data perform AI image judgment to reduce personnel operating risks and improve operating efficiency
- Control Center: Integrated Management and Control System to replace paper inspection records, and, effectively improving the integrated data analysis capabilities with 5G/AI.

Expected Results

In-station efficiency increased by 25%
Bridge Inspection Efficiency increased by 50%
Tunnel Inspection Efficiency increased by 10%

Smart Railways IV

Providing "Smart Total Solution" Services by AloT Vertically Integrated Technologies to Improve Management Efficiency and Service Quality.

Pain Points

- > Strengthen platform management
- > Increase passenger volumes
- Many management interfaces and technology applications

Project: 5G Smart Train FRMCS Application Platform for Operation Demonstration

Lead Companies

Taiwan Fixed Network Co., Ltd. (Taiwan Mobile Affiliated Company)

Solutions

5G TaaS transportation integrated application platform

CCTV combines AI image recognition and remote monitoring services to determine ticket evasion

AR passengers enjoy augmented reality interaction and city sightseeing guide

Image detection and identification of safety, combined with AI automatic warning and data analysis

Expected Results

- Track safety image analysis AI recognition accuracy reaches 90%
- Increased frequency of defensive driving by 10%
- Effectiveness of fare evasion and fare replenishment passed 30%

Smart Highways I

Create 5G smart highway services to improve the traffic control center's real-time warning capabilities

Pain Points

- ➤ Limited Manpower
- > Equipment Stability
- ➤ Manual work and information dispersion

Phase I Key Achievements

Reduce CO2e emissions by 48.2% (43.22 tons/yr) Average travel time reduced 10% No. of processing images of vehicles – 20,000 (general traffic 90%, special vehicles 80%)

Project:

- 1. 5G integrated AIoT applications in a smart traffic control and management platform: a demonstration operation plan (Phase I)
- 2. Smart Transportation Verification Plan Demonstration of 5G×AI Ecological Network for Integrated Innovative Traffic Management (Phase II)

Lead Company

Solution: Suao Highway Smart Control System

Al roads in tunnels accident detection system

Smart work zones monitoring system

Phase II Expected Results

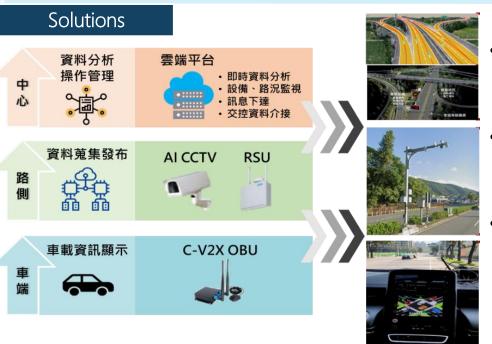
Reduce CO2e emissions by 40 tons a year Reduce travel time in peak hours by 20,000 hours (10%~12%)

Maintain peak average speed of 30kph

Smart Highways II

Foresight Technology Applications

To improve safety and operation efficiency on National Freeway


Pain Points

- Congested road conditions on Freeway No.5
- > Limited data collection
- ➤ Accuracy of traffic control information display
- > Untimely information release

Project: The Next-Generation of Freeway C-ITS Service

Lead Company

- Digital Twin Traffic
 Management Platform
 Application Service
- Al Image Recognition and Traffic Data Collection Service
- C-V2X & IoV on Freeway Bus Providing Real Time Information

Expected Results

Travel time reduced by 5% on surface roads and 3% on Freeway No.5

Freeway accidents reduced by 3%

Alert Display Sign

Smart Harbor

Developed 5G smart harbor application services, creating the first UTM service verification field

Pain Points

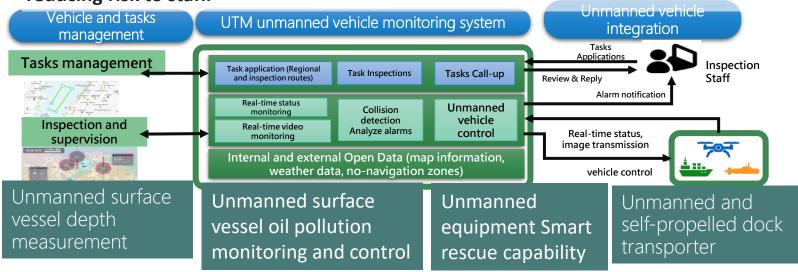
- Difficulty in grasping the real-time status in a port environment.
- > The port environment is difficult to be flexibly inspection.
- Underwater safety relies on manual inspection.

Phase I Key Achievements

Unmanned vehicles replaced humans in inspections 120 times, shortening inspection time and increasing efficiency by more than 60%.

Accuracy in identifying marine pollutants is close to 80%.

Project:


- 1. 5G Smart Seaport Unmanned Vehicle Application and UTM Service Function Verification (Phase I)
- 2. 5G Smart Harbor 2.0 and Innovative Tourism Application Project (Phase II)

Solutions

Lead Company

Multiple Unmanned Vehicles: drone inspection and underwater maritime robot shore wall inspection. To solve inspection needs in different areas, improving efficiency and reducing risk to staff.

Phase II Expected Results

- Oil pollution detection data collection rate is near 90%
- Robot terminal transportation: saves 50% of labor costs, 25% of travel time, and improves operating efficiency by 30%

Smart Airport Terminal Project:

5GxAI smart applications to enhance passenger service quality and operation efficiency

Pain Points

- **➤** Lack of inspection manpower
- > Manual identification is inefficient
- Unable to monitor abnormal notifications in real time

Phase I Key Achievements

Number of service experiences >2500 visitors

Smart mobile CCTV helps improve the power of security monitoring

- 1. 5G Smart Travel Service Demonstration (Phase I)
- 2. 5G Security, Operation, and Caring Travel Service (Phase II)

Lead Companies PAPAGO!* (Phase I) Hua m (Phase II

- ➤ The Love Electric Wheelchair improves the convenience of independent mobility for passengers.
- > Autonomous Mobile Robots combine voice and imaging functions for customer service services.
- ➤ The value-added travel transportation service automatically records the number of passengers and provides passengers with ride-hailing services and caring wheelchair services.
- ➤ Use AI Recognition Technology to assist in calculating security inspection service levels, monitor key areas, and provide analytical data to management units.
- ➤ Integrated Platform for the control center to integrate and coordinate operation management and improve service quality and operational efficiency.

Phase II Expected Results

- Security monitoring and operating expenses reduced by NT\$400,000
- Operating efficiency of shuttle service improved by 10%
- CCTV usage improved operational efficiency by 95%

Create a "one-stop digital tourism" travel service and value-added tourist experience quality

Pain Points

- > Car rental service is operated manually
- > Difficulty in parking management
- Scenic spots mainly rely on paper tickets for records

Project:

Low Carbon Smart Tourism System Integrating AR Guided Service, Smart Parking Management, and TaaS Applications

Lead Company

TaaS Integrated Travel Service Platform

Electric two-wheel rental system allows vehicle reservation and

insurance information login

Smart parking pillar to count down the parking time and provide timeout warnings

Scenic Area AR Navigation System

Expected Results

- Site parking management labor costs reduced by NT\$1.26 mil.
- Introduced short-distance mobile vehicles to scenic spots two-wheeled electric vehicles resulted in a carbon reduction of 43.2 tons of carbon dioxide.
- Minimized paper ticket use for the cruise ship

Concluding Remarks

- 1. Main Themes and Strategies of National ITS Development: Go Safe, Go Smart, and Go Green.
- 2. Applications of Digital Technologies for Achieving the 2 Zero Goals SDGs 30 and Net Zero 50: Challenges and Opportunities.
- 3. Evidence-based Decision and Technology-based Approach for Enhancement of Quality Service, Operation Efficiency, Industry Development, and e-Governance: PPPP Models for 5GxAloT driven ITS Deployments.
- 4. Open Platform for Collaborations of NGOs, Academia, Industry, and Governments.
- 5. International Collaboration: Technical Exchange Platform and Investments.

Thanks

S.K. Jason Chang skchang@ntu.edu.tw

Look forward to welcoming all of you in 2029 ITS World Congress @ Taipei

